Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 777
Filtrar
1.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394930

RESUMO

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Assuntos
Parasitos , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Humanos , Tripanossomicidas/química , Trypanosoma brucei rhodesiense , Guanidina/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Guanidinas/farmacologia , Metabolismo Energético , Mamíferos
2.
J Med Chem ; 67(5): 3437-3447, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38363074

RESUMO

Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 µM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense , Trypanosoma brucei gambiense , Tripanossomicidas/toxicidade , Tripanossomicidas/uso terapêutico
3.
Chemistry ; 30(3): e202303316, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37926692

RESUMO

Balgacyclamide A-C are a family of cyanobactin natural products isolated from freshwater cyanobacteria Microcystis aeruginosa. These macrocyclic peptides are characterized by their oxazoline-thiazole core, their 7 or 8 stereocenters, and their antiparasitic activities. Balgacyclamide B is known for its activity towards Plasmodium falciparum chloroquine-resistant strain K1, Trypanosoma brucei rhodesiense, and Leishmania donovani. In this report, the first total synthesis of Balgacyclamide B is described in a 17-steps pathway and a 2 % overall yield. The synthetic pathway toward balgacyclamide B can be adapted for the future syntheses of balgacyclamide A and C. In addition, a brief history background of oxazolines syntheses is shown to emphasize the importance of the cyclization conditions used to interconvert or retain configuration of ß-hydroxy amides via dehydrative cyclization.


Assuntos
Antiparasitários , Leishmania donovani , Peptídeos Cíclicos , Testes de Sensibilidade Parasitária , Trypanosoma brucei rhodesiense , Plasmodium falciparum
4.
Emerg Infect Dis ; 30(1): 125-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967521

RESUMO

We report 4 cases of human African trypanosomiasis that occurred in Ethiopia in 2022, thirty years after the last previously reported case in the country. Two of 4 patients died before medicine became available. We identified the infecting parasite as Trypanosoma brucei rhodesiense. Those cases imply human African trypanosomiasis has reemerged.


Assuntos
Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Trypanosoma brucei rhodesiense , Etiópia/epidemiologia
5.
Fundam Clin Pharmacol ; 38(1): 72-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37479675

RESUMO

Human African trypanosomosis (HAT) which is also known as sleeping sickness is caused by Trypanosoma brucei gambiense that is endemic in western and central Africa and T. b. rhodesiense that is endemic in eastern and southern Africa. Drugs used for treatment against HAT first stage have limited effectiveness, and the second stage drugs have been reported to be toxic, expensive, and have time-consuming administration, and parasitic resistance has developed against these drugs. The aim of this study was to evaluate the anti-trypanosomal activity of nitrofurantoin-triazole hybrids against T. b. gambiense and T. b. rhodesiense parasites in vitro. This study screened 19 synthesized nitrofurantoin-triazole (NFT) hybrids on two strains of human trypanosomes, and cytotoxicity was evaluated on Madin-Darby bovine kidney (MDBK) cells. The findings in this study showed that an increase in the chain length and the number of carbon atoms in some n-alkyl hybrids influenced the increase in anti-trypanosomal activity against T. b. gambiense and T. b. rhodesiense. The short-chain n-alkyl hybrids showed decreased activity compared to the long-chain n-alkyl hybrids, with increased activity against both T. b. gambiense and T. b. rhodesiense. Incorporation of additional electron-donating substituents in some NFT hybrids showed increased anti-trypanosomal activity than to electron-withdrawing substituents in NFT hybrids. All 19 NFT hybrids tested displayed better anti-trypanosomal activity against T. b. gambiense than T. b. rhodesiense. The NFT hybrid no. 16 was among the best performing hybrids against both T. b. gambiense (0.08 ± 0.04 µM) and T. b.rhodesiense (0.11 ± 0.06 µM), and its activity might be influenced by the introduction of fluorine in the para-position on the benzyl ring. Remarkably, the NFT hybrids in this study displayed weak to moderate cytotoxicity on MDBK cells. All of the NFT hybrids in this study had selectivity index values ranging from 18 to greater than 915, meaning that they were up to 10-100 times fold selective in their anti-trypanosomal activity. The synthesized NFT hybrids showed strong selectivity >10 to T. b. gambiense and T. b. rhodesiense, which indicates that they qualify from the initial selection criteria for potential hit drugs.


Assuntos
Nitrofurantoína , Tripanossomíase Africana , Humanos , Animais , Bovinos , Nitrofurantoína/uso terapêutico , Trypanosoma brucei rhodesiense , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Trypanosoma brucei gambiense
6.
Eur J Med Chem ; 263: 115954, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984297

RESUMO

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense and rhodesiense, is a parasitic disease endemic to sub-Saharan Africa. Untreated cases of HAT can be severely debilitating and fatal. Although the number of reported cases has decreased progressively over the last decade, the number of effective and easily administered medications is very limited. In this work, we report the antitrypanosomal activity of a series of potent compounds. A subset of molecules in the series are highly selective for trypanosomes and are metabolically stable. One of the compounds, (E)-N-(4-(methylamino)-4-oxobut-2-en-1-yl)-5-nitrothiophene-2-carboxamide (10), selectively inhibited the growth of T. b. brucei, T. b. gambiense and T. b. rhodesiense, have excellent oral bioavailability and was effective in treating acute infection of HAT in mouse models. Based on its excellent bioavailability, compound 10 and its analogs are candidates for lead optimization and pre-clinical investigations.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Humanos , Trypanosoma brucei rhodesiense , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Trypanosoma brucei gambiense
7.
Parasitol Res ; 123(1): 11, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057659

RESUMO

Suramin was the first drug developed using the approach of medicinal chemistry by the German Bayer company in the 1910s for the treatment of human African sleeping sickness caused by the two subspecies Trypanosoma brucei gambiense and Trypanosoma brucei rhodesienese. However, the drug was politically instrumentalized by the German government in the 1920s in an attempt to regain possession of its former African colonies lost after the First World War. For this reason, the formula of suramin was kept secret for more than 10 years. Eventually, the French pharmacist Ernest Fourneau uncovered the chemical structure of suramin by reverse engineering and published the formula of the drug in 1924. During the Nazi period, suramin became the subject of colonial revisionism, and the development of the drug was portrayed in books and films to promote national socialist propaganda. Ever since its discovery, suramin has also been tested for bioactivity against numerous other infections and diseases. However, sleeping sickness caused by Trypanosoma brucei rhodesiense is the only human disease for which treatment with suramin is currently approved.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Suramina/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense
8.
PLoS Negl Trop Dis ; 17(12): e0011803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055777

RESUMO

T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT.


Assuntos
Transcriptoma , Tripanossomíase Africana , Animais , Humanos , Trypanosoma brucei rhodesiense , Malaui , Fenótipo , Proteínas Repressoras
10.
Artigo em Inglês | MEDLINE | ID: mdl-37757728

RESUMO

Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Suramina/farmacologia , Suramina/uso terapêutico , DNA Helicases/genética , Trypanosoma/genética , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei brucei/genética
11.
ACS Infect Dis ; 9(10): 1964-1980, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37695781

RESUMO

We discovered dibenzannulated medium-ring keto lactams (11,12-dihydro-5H-dibenzo[b,g]azonine-6,13-diones) as a new antimalarial chemotype. Most of these had chromatographic LogD7.4 values ranging from <0 to 3 and good kinetic solubilities (12.5 to >100 µg/mL at pH 6.5). The more polar compounds in the series (LogD7.4 values of <2) had the best metabolic stability (CLint values of <50 µL/min/mg protein in human liver microsomes). Most of the compounds had relatively low cytotoxicity, with IC50 values >30 µM, and there was no correlation between antiplasmodial activity and cytotoxicity. The four most potent compounds had Plasmodium falciparum IC50 values of 4.2 to 9.4 nM and in vitro selectivity indices of 670 to >12,000. They were more than 4 orders-of-magnitude less potent against three other protozoal pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani) but did have relatively high potency against Toxoplasma gondii, with IC50 values ranging from 80 to 200 nM. These keto lactams are converted into their poorly soluble 4(1H)-quinolone transannular condensation products in vitro in culture medium and in vivo in mouse blood. The similar antiplasmodial potencies of three keto lactam-quinolone pairs suggest that the quinolones likely contribute to the antimalarial activity of the lactams.


Assuntos
Antimaláricos , Quinolonas , Trypanosoma cruzi , Camundongos , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Lactamas , Trypanosoma brucei rhodesiense
12.
Bull World Health Organ ; 101(8): 529-534, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529024

RESUMO

Rhodesiense human African trypanosomiasis is a lethal parasitic infection caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies in eastern and southern Africa. It accounts for around 5% of all cases of human African trypanosomiasis. Currently, there is no simple serological test for rhodesiense human African trypanosomiasis and diagnosis relies on microscopic confirmation of trypanosomes in samples of blood or other tissues. The availability of a simple and accurate diagnostic test would aid the control, surveillance and treatment of the disease. A subcommittee of the World Health Organization's Neglected Tropical Diseases Diagnostics Technical Advisory Group has developed a target product profile for a diagnostic tool to identify T. b. rhodesiense infection. The optimum tool would have a sensitivity and specificity above 99% for detecting T. b. rhodesiense, but be simple enough for use by minimally trained health-care workers in unsophisticated peripheral health facilities or mobile teams in villages. The test should yield a qualitative result that can be easily observed and can be used to determine treatment. An antigen test would be preferable, with blood collected by finger-prick. Ideally, there should be no need for a cold chain, instrumentation or precision liquid handling. The test should be usable between 10 °C and 40 °C and between 10% and 88% relative humidity. Basic training should take under 2 hours and the test should involve fewer than five steps. The unit cost should be less than 1 United States dollar.


La trypanosomiase humaine africaine à T. b. rhodesiense est une infection parasitaire mortelle causée par Trypanosoma brucei rhodesiense et transmise par les mouches tsé-tsé en Afrique orientale et australe. Elle représente environ 5% de l'ensemble des cas de trypanosomiase humaine africaine. À l'heure actuelle, il n'existe aucun test sérologique simple pour l'infection à T. b. rhodesiense et le diagnostic repose sur la confirmation microscopique de la présence de trypanosomes dans des échantillons de sang ou d'autres tissus. Fournir un test de diagnostic simple et précis favoriserait la lutte, la surveillance et la prise en charge de la maladie. Un sous-comité du Groupe consultatif technique sur les produits de diagnostic des maladies tropicales négligées de l'Organisation mondiale de la Santé a donc élaboré un profil de produit cible pour un outil visant à détecter une infection par T. b. rhodesiense. L'outil le plus adapté présenterait un niveau de sensibilité et de spécificité supérieur à 99% pour la détection de T. b. rhodesiense, tout en étant à la portée de professionnels de la santé ayant reçu une formation sommaire, tant dans des structures de santé périphériques basiques qu'au sein d'équipes mobiles dans les villages. Cet outil doit fournir un résultat fiable, facile à interpréter, qui peut servir à établir un traitement. Un test antigénique serait préférable, avec prélèvement de l'échantillon sanguin par le biais d'une piqûre au bout du doigt. Idéalement, l'outil ne doit pas être thermosensible, ni nécessiter un équipement spécifique ou une manipulation de liquides délicate. Le test doit pouvoir être utilisé à une température comprise entre 10 °C et 40 °C, ainsi que dans une humidité relative de 10% à 88%. La formation requise pour son utilisation doit durer moins de deux heures et le test doit être effectué en moins de cinq étapes, Enfin, son coût unitaire doit être inférieur à un dollar américain.


La tripanosomiasis humana africana rhodesiense es una infección letal parasitaria causada por el Trypanosoma brucei rhodesiense, y es transmitida por la mosca tse-tsé en África oriental y meridional. Representa aproximadamente el 5% de todos los casos de tripanosomiasis humana africana. Actualmente, no existe ninguna prueba serológica simple para la tripanosomiasis humana africana rhodesiense, y el diagnóstico se basa en la confirmación microscópica de tripanosomas existentes en muestras de sangre u otros tejidos. Una prueba diagnóstica sencilla y precisa ayudaría a controlar, vigilar y tratar la enfermedad. Un subcomité del Grupo Asesor Técnico de Diagnóstico de Enfermedades Tropicales Desatendidas de la Organización Mundial de la Salud ha creado un perfil de producto objetivo para una herramienta de diagnóstico que permita identificar la infección T. b. rhodesiense. La herramienta óptima tendría una sensibilidad y una especificidad superiores al 99% para detectar la T. b. rhodesiense y, al ser lo suficientemente sencilla, podrían utilizarla trabajadores sanitarios mínimamente formados, en centros sanitarios periféricos no sofisticados, o bien equipos móviles. La prueba debe arrojar un resultado cualitativo de fácil lectura y que pueda utilizarse para determinar el tratamiento. Sería preferible una prueba de antígenos, con sangre extraída mediante punción digital. Idealmente, no debería ser necesaria la cadena de frío, la instrumentación ni la manipulación de líquidos de precisión. La prueba debe poder utilizarse entre 10 °C y 40 °C, con una humedad relativa de entre el 10% y el 88%. La instrucción básica debe llevar menos de 2 horas y la prueba debe incluir menos de cinco pasos. El coste de la unidad debe ser inferior a 1 dólar estadounidense.


Assuntos
Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , África Austral , Sensibilidade e Especificidade , Testes Diagnósticos de Rotina
13.
Parasitol Int ; 96: 102775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390918

RESUMO

Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Óxido Nítrico , Trypanosoma brucei rhodesiense , Tripanossomíase Africana/tratamento farmacológico , Vitamina B 12/efeitos adversos
14.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239824

RESUMO

Rhodesain is the main cysteine protease of Trypanosoma brucei rhodesiense, the parasite causing the acute lethal form of Human African Trypanosomiasis. Starting from the dipeptide nitrile CD24, the further introduction of a fluorine atom in the meta position of the phenyl ring spanning in the P3 site and the switch of the P2 leucine with a phenylalanine led to CD34, a synthetic inhibitor that shows a nanomolar binding affinity towards rhodesain (Ki = 27 nM) and an improved target selectivity with respect to the parent dipeptide nitrile CD24. In the present work, following the Chou and Talalay method, we carried out a combination study of CD34 with curcumin, a nutraceutical obtained from Curcuma longa L. Starting from an affected fraction (fa) of rhodesain inhibition of 0.5 (i.e., the IC50), we observed an initial moderate synergistic action, which became a synergism for fa values ranging from 0.6 to 0.7 (i.e., 60-70% inhibition of the trypanosomal protease). Interestingly, at 80-90% inhibition of rhodesain proteolytic activity, we observed a strong synergism, resulting in 100% enzyme inhibition. Overall, in addition to the improved target selectivity of CD34 with respect to CD24, the combination of CD34 + curcumin resulted in an increased synergistic action with respect to CD24 + curcumin, thus suggesting that it is desirable to use CD34 and curcumin in combination.


Assuntos
Curcumina , Trypanosoma brucei rhodesiense , Curcumina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Nitrilas , Relação Estrutura-Atividade , Trypanosoma brucei rhodesiense/efeitos dos fármacos
15.
Fitoterapia ; 168: 105517, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121409

RESUMO

Seven undescribed sesquiterpene derivatives, Azerins A-G (3-6, 8, 14 and 15), three known sesquiterpene phenols, kopetdaghin A (1), kopetdaghin B (2) and latisectin (7), together with five known sesquiterpene coumarins (9-13), were isolated from the roots of Dorema glabrum. The structures were elucidated by comprehensive 1D- and 2D-NMR spectral analysis as well as HR-ESI-MS. Compounds were assessed for their in vitro antiprotozoal activity against Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Cytotoxic potentials of the compounds were also tested on L6 rat skeletal myoblasts. Azerin G (15) showed a potent preferential growth inhibitory activity against T. b. rhodesiense with IC50 value of 0.01 µM and selectivity index of 329. Compounds 1, 4, 7 and 8 were also found as the most active compounds with selective growth inhibitory effects toward P. falciparum with selectivity indices ranging from 11.6 to 16.7 (IC50: 1.8-24.6 µM).


Assuntos
Antiprotozoários , Ferula , Leishmania donovani , Sesquiterpenos , Trypanosoma cruzi , Animais , Ratos , Estrutura Molecular , Antiprotozoários/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Espectroscopia de Ressonância Magnética , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária
16.
Mol Divers ; 27(3): 1375-1384, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35842884

RESUMO

Human African trypanosomiasis (HAT) or sleeping sickness is a protozoan neglected tropical disease, which is the main health worry in more than 20 countries in Africa. A novel approach is presented to predict the antitrypanosomal activity of sesquiterpene lactones (STLs) in terms of biological activity (pIC50). The largest reported data set of pIC50 for Trypanosoma brucei rhodesiense (Tbr) as one form of HAT are used to derive and test the new model. The new model is based on five additive and two non-additive molecular structural parameters in several frameworks where it can be easily applied through a computer code. It is derived and tested based on 125 and 31 experimental data, respectively, with different types of statistical parameters. The high reliability of the novel model is compared with the best available QSAR models, which use "classical" molecular descriptors, and 3D pharmacophore features. The values of R2 (correlation coefficient), root mean squared error (RMSE), and RMSEP (root mean square error of prediction) of the new model are 0.77, 0.38, and 0.35, respectively. Meanwhile, R2, RMSE, and RMSEP of comparative QSAR models based on complex descriptors are in the ranges 0.71-76, 0.46-0.4, and 0.51-0.44, respectively. The predictive results of the novel approach confirm its high simplicity, reliability, precision, accuracy, and goodness-of-fit.


Assuntos
Sesquiterpenos , Tripanossomíase Africana , Animais , Humanos , Estrutura Molecular , Reprodutibilidade dos Testes , Lactonas/farmacologia , Lactonas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Trypanosoma brucei rhodesiense
17.
J Biomol Struct Dyn ; 41(12): 5672-5684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35751127

RESUMO

Human African Trypanosomiasis (HAT) or sleeping sickness is caused by the Trypanosoma brucei rhodesiense, a subspecies of the Trypanosomatide family. The parasite is associated with high morbidity and mortality rate in both animals and humans, claimed to be more fatal than other vector-transmitted diseases such as malaria. The majority of existing medications are highly toxic, not effective in the late chronic phase of the disease, and require maximum dosages to fully eradicate the parasite. In this study, we used computational methods to find out natural products that inhibit the Rhodesain, a parasitic enzyme that plays an important role in the parasite's pathogenicity, multiplication, and ability to pass through the host's blood-brain barrier. A library of 270540 natural products from ZINC databases was processed by using e-pharmacophore hypnosis and screening procedures, molecular docking, ADMET processes, and MM-GBSA calculations. This led to the identification of 3 compounds (ZINC000096269390, ZINC000035485292, and ZINC000035485242) which were then subjected to molecular dynamics. The findings of this study showed excellent binding affinity and stability toward the Rhodesain and suggest they may be a hopeful treatment for HAT in the future if further clinical trials were performed.Communicated by Ramaswamy H. Sarma.


Assuntos
Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/parasitologia , Simulação de Acoplamento Molecular , Trypanosoma brucei rhodesiense , Cisteína Endopeptidases/química
18.
Annu Rev Pathol ; 18: 19-45, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36055769

RESUMO

African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.


Assuntos
COVID-19 , Tripanossomíase Africana , Humanos , Apolipoproteína L1/genética , Inflamação , Trypanosoma brucei rhodesiense/fisiologia , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologia
19.
PLoS Negl Trop Dis ; 16(11): e0010885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342910

RESUMO

BACKGROUND: Sleeping sickness, or human African trypanosomiasis (HAT), is transmitted by tsetse flies in endemic foci in sub-Saharan Africa. Because of international travel and population movements, cases are also occasionally diagnosed in non-endemic countries. METHODOLOGY/PRINCIPAL FINDINGS: Antitrypanosomal medicines to treat the disease are available gratis through the World Health Organization (WHO) thanks to a public-private partnership, and exclusive distribution of the majority of them enables WHO to gather information on all exported cases. Data collected by WHO are complemented by case reports and scientific publications. During 2011-2020, 49 cases of HAT were diagnosed in 16 non-endemic countries across five continents: 35 cases were caused by Trypanosoma brucei rhodesiense, mainly in tourists visiting wildlife areas in eastern and southern Africa, and 14 cases were due to T. b. gambiense, mainly in African migrants originating from or visiting endemic areas in western and central Africa. CONCLUSIONS/SIGNIFICANCE: HAT diagnosis in non-endemic countries is rare and can be challenging, but alertness and surveillance must be maintained to contribute to WHO's elimination goals. Early detection is particularly important as it considerably improves the prognosis.


Assuntos
Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/terapia , Trypanosoma brucei rhodesiense , População Negra , África Austral , Trypanosoma brucei gambiense
20.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430948

RESUMO

Rhodesain is a cysteine protease that is crucial for the life cycle of Trypanosoma brucei rhodesiense, a parasite causing the lethal form of Human African Trypanosomiasis. CD24 is a recently developed synthetic inhibitor of rhodesain, characterized by a nanomolar affinity towards the trypanosomal protease (Ki = 16 nM), and acting as a competitive inhibitor. In the present work, we carried out a combination study of CD24 with curcumin, the multitarget nutraceutical obtained from Curcuma longa L., which we demonstrated to inhibit rhodesain in a non-competitive manner. By applying the Chou and Talalay method, we obtained an initial additive effect at IC50 (fa = 0.5, Combination Index = 1), while for the most relevant fa values, ranging from 0.6 to 1, i.e., from 60% to 100% of rhodesain inhibition, we obtained a combination index < 1, thus suggesting that an increasingly synergistic action occurred for the combination of the synthetic inhibitor CD24 and curcumin. Furthermore, the combination of the two inhibitors showed an antitrypanosomal activity better than that of CD24 alone (EC50 = 4.85 µM and 10.1 µM for the combination and CD24, respectively), thus suggesting the use of the two inhibitors in combination is desirable.


Assuntos
Curcumina , Trypanosoma brucei rhodesiense , Humanos , Curcumina/farmacologia , Dipeptídeos , Nitrilas , Cisteína Endopeptidases , Combinação de Medicamentos , Antígeno CD24
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...